在这份技术报告中,我们简要介绍了ACM-MM 2022中的PIC化妆视频接地(MTVG)挑战的团队“ PKU-WICT-MIPL”的解决方案。给定未修饰的化妆视频和步骤查询,MTVG Aims是要在视频中定位目标化妆步骤的时间瞬间。为了解决这项任务,我们提出了一个短语关系挖掘框架,以利用与细粒度和整个句子相关的时间定位关系。此外,我们建议限制不同步骤句子查询的本地化结果,以免通过动态编程算法相互重叠。实验结果证明了我们方法的有效性。我们的最终提交在排行榜上排名第二,从第一个方面只有0.55 \%的差距。
translated by 谷歌翻译
医疗人工智能(AI)的最新进展已提供了可以达到临床专家水平绩效的系统。但是,当在与训练环境不同的临床环境中评估时,这种系统往往会证明次优的“分布式”性能。一种常见的缓解策略是使用特定地点数据为每个临床环境开发单独的系统[1]。但是,这很快变得不切实际,因为医疗数据很耗时,可以注释且昂贵[2]。因此,“数据有效概括”的问题给医学AI开发带来了持续的困难。尽管代表性学习的进展显示出希望,但并未对其好处进行严格的研究,特别是用于分布的设置。为了应对这些挑战,我们提出了RESEDIS,这是一种统一的代表学习策略,以提高医学成像AI的鲁棒性和数据效率。雷雷迪斯使用大规模监督转移学习与自我监督学习的通用组合,几乎不需要特定于任务的自定义。我们研究各种医学成像任务,并使用回顾性数据模拟三个现实的应用程序场景。 RESEDIS表现出明显改善的分布性能,而在强有力的基线上,诊断准确性相对相对提高了11.5%。更重要的是,我们的策略会导致对医学成像AI的强大数据有效的概括,并使用跨任务的1%至33%的重新培训数据匹配强有力的监督基线。这些结果表明,Repedis可以显着加速医学成像AI开发的生命周期,从而为医学成像AI提供了重要的一步,以产生广泛的影响。
translated by 谷歌翻译
基于深度学习的组织病理学图像分类是帮助医生提高癌症诊断的准确性和迅速性的关键技术。然而,在复杂的手动注释过程中,嘈杂的标签通常是不可避免的,因此误导了分类模型的培训。在这项工作中,我们介绍了一种用于组织病理学图像分类的新型硬样本感知噪声稳健学习方法。为了区分来自有害嘈杂的内容漏洞,我们通过使用样本培训历史来构建一个简单/硬/噪声(EHN)检测模型。然后,我们将EHN集成到自动训练架构中,通过逐渐校正降低噪声速率。通过获得的几乎干净的数据集,我们进一步提出了一种噪声抑制和硬增强(NSHE)方案来训练噪声鲁棒模型。与以前的作品相比,我们的方法可以节省更多清洁样本,并且可以直接应用于实际嘈杂的数据集场景,而无需使用清洁子集。实验结果表明,该方案在合成和现实世界嘈杂的数据集中优于当前最先进的方法。源代码和数据可在https://github.com/bupt-ai-cz/hsa-nrl/处获得。
translated by 谷歌翻译
人类通过不同的渠道表达感受或情绪。以语言为例,它在不同的视觉声学上下文下需要不同的情绪。为了精确了解人类意图,并减少歧义和讽刺引起的误解,我们应该考虑多式联路信号,包括文本,视觉和声学信号。至关重要的挑战是融合不同的特征模式以进行情绪分析。为了有效地融合不同的方式携带的信息,更好地预测情绪,我们设计了一种基于新的多主题的融合网络,这是由任何两个对方式之间的相互作用不同的观察来启发,它们是不同的,并且它们不同样有助于最终的情绪预测。通过分配具有合理关注和利用残余结构的声学 - 视觉,声学 - 文本和视觉文本特征,我们参加了重要的特征。我们对四个公共多模式数据集进行了广泛的实验,包括中文和三种英文中的一个。结果表明,我们的方法优于现有的方法,并可以解释双模相互作用在多种模式中的贡献。
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
Existing measures and representations for trajectories have two longstanding fundamental shortcomings, i.e., they are computationally expensive and they can not guarantee the `uniqueness' property of a distance function: dist(X,Y) = 0 if and only if X=Y, where $X$ and $Y$ are two trajectories. This paper proposes a simple yet powerful way to represent trajectories and measure the similarity between two trajectories using a distributional kernel to address these shortcomings. It is a principled approach based on kernel mean embedding which has a strong theoretical underpinning. It has three distinctive features in comparison with existing approaches. (1) A distributional kernel is used for the very first time for trajectory representation and similarity measurement. (2) It does not rely on point-to-point distances which are used in most existing distances for trajectories. (3) It requires no learning, unlike existing learning and deep learning approaches. We show the generality of this new approach in three applications: (a) trajectory anomaly detection, (b) anomalous sub-trajectory detection, and (c) trajectory pattern mining. We identify that the distributional kernel has (i) a unique data-dependent property and the above uniqueness property which are the key factors that lead to its superior task-specific performance; and (ii) runtime orders of magnitude faster than existing distance measures.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.
translated by 谷歌翻译
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services which require low delay and high accuracy. Sampling rate adaption which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this paper, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
translated by 谷歌翻译